A Simple but Effective Maximal Frequent Itemset Mining Algorithm over Streams

نویسندگان

  • Haifeng Li
  • Ning Zhang
  • Zhixin Chen
چکیده

Maximal frequent itemsets are one of several condensed representations of frequent itemsets, which store most of the information contained in frequent itemsets using less space, thus being more suitable for stream mining. This paper considers a simple but effective algorithm for mining maximal frequent itemsets over a stream landmark. We design a compact data structure named FP-FOREST to improve an state-of-the-art algorithm INSTANT; thus, itemsets can be compressed and the support counting can be effective performed. Our experimental results show our algorithm achieves a better performance in memory cost and running time cost.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Review on Algorithms for Mining Frequent Itemset Over Data Stream

Frequent itemset mining over dynamic data is an important problem in the context of data mining. The two main factors of data stream mining algorithm are memory usage and runtime, since they are limited resources. Mining frequent pattern in data streams, like traditional database and many other types of databases, has been studied popularly in data mining research. Many applications like stock ...

متن کامل

Mining Frequent Itemsets Over Arbitrary Time Intervals in Data Streams

Mining frequent itemsets over a stream of transactions presents di cult new challenges over traditional mining in static transaction databases. Stream transactions can only be looked at once and streams have a much richer frequent itemset structure due to their inherent temporal nature. We examine a novel data structure, an FP-stream, for maintaining information about itemset frequency historie...

متن کامل

Ramp: Fast Frequent Itemset Mining with Efficient Bit-Vector Projection Technique

Mining frequent itemset using bit-vector representation approach is very efficient for dense type datasets, but highly inefficient for sparse datasets due to lack of any efficient bit-vector projection technique. In this paper we present a novel efficient bit-vector projection technique, for sparse and dense datasets. To check the efficiency of our bit-vector projection technique, we present a ...

متن کامل

SuffixMiner: Efficiently Mining Frequent Itemsets in Data Streams by Suffix-Forest

We proposed a new algorithm SuffixMiner which eliminates the requirement of multiple passes through the data when finding out all frequent itemsets in data streams, takes full advantage of the special property of suffixtree to avoid generating candidate itemsets and traversing each suffix-tree during the itemset growth, and utilizes a new itemset growth method to mine all frequent itemsets in d...

متن کامل

MaRFI: Maximal Regular Frequent Itemset Mining using a pair of Transaction-ids

Frequent pattern mining is the fundamental and most dominant research area in data mining. Maximal frequent patterns are one of the compact representations of frequent itemsets. There is more number of algorithms to find maximal frequent patterns that are suitable for mining transactional databases. Users not only interested in occurrence frequency but may be interested on frequent patterns tha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • JSW

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012